## Sennen School Maths Policy

Mathematics Mastery


 to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

## Background






 of using formal methods is rightly coupled with the explicit requirement for children to use concrete materials and create pictorial representations - a key component of the mastery approach.

## Mathematical Language



 expectations of the mathematical language used are essential, with teachers only accepting what is correct.

> The quality and variety of language that pupils
> hear and speak are key factors in developing their
> mathematical vocabulary and presenting a
mathematical justification, argument or proof.
2014Maths Programme of Study

How to use the policy



 modules. These modules use the Singapore Maths Methods and are affiliated to the workings of the 2014 Maths Programme of Study.

 [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept, they need to master all three phases within a year group's scheme of work

## Content of the Policy

For ease of movement, many items in this document have been hyperlinked, including the contents below. By clicking on the hyperlink, you can more easily navigate through the document.

1. Addition
2. Subtraction
3. Multiplication
4. Division
5. Mathematical Language

| Objective and Strategies | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Combining two parts to make a whole: part- whole model |  |  | 5 4 + 3 = 7 |
| Starting at the biggernumber and counting on | Start with the largernumber on the bead string and then counton to the smaller number 1 by 1 to find the answer. | $12+5=17$ <br> Start at the larger number on the number line and count on in ones or in one jump to find the answer. | $5+12=17$ <br> Placethelargernumberinyourheadandcountonthesmaller number to find your answer. |
| Regrouping to make 10. | $6+5=11$ <br> Start with the bigger number and use the smaller number to make 10 . | Use pictures or a number line. Regrouporpartition the smaller number to make 10. $\begin{aligned} & 3+9= \\ & 9+5=14 \end{aligned}$ <br> 14 | $7+4=11$ <br> If I am at seven, how many more do I need to make 10. How many more do I add on now? |
| Adding three single digits | $4+7+6=17$ <br> Put 4 and 6 together to make 10. Add on 7 . <br> Following on from making 10 , make 10 with 2 of the digits (if possible) then add on the third digit. |  | $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ <br> Combine the two numbers that make 10 and then add on the remainder. |


Objective and Strategies



Now look at the tens, can Itake away 8tens easily? I need to exchange one hundred for ten tens.


Now I can take away eight tens and complete my subtraction


Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

When confident, children can find their own way to record
the exchange/regrouping

Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.
the exchange/regrouping.


```
Step 2
    lollll

\section*{Step 2}
```

    lol
    ```
```

```
    lol
```

```

\section*{\(728-582=146\)}

H \(\quad\) u
\({ }^{6} \not 7 \quad 128\)

\begin{tabular}{rrrrr} 
& & 5 & 12 & \\
& 2 & 6 & 3 & \\
2 & & 0 \\
& 2 & 6 &. & 5 \\
\hline 2 & 3 & 6 &. & 5
\end{tabular}
Objective and Strategies


Objective and Strategies
\(14 \div 3=\)
Divide objects between groups andseehow much is left over


Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.


Draw dots and group them to divide an amount and clearly show a remainder.

\section*{}
tudents can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups


Encourage them to move towards counting in multiples to divide more efficiently

Complete written divisions and show the remainder using \(r\)
\(29 \div 8=3\) REMAINDER 5

dividend divisor quotient remainder

Begin with divisions that divide equally with no remainder.


Move onto divisions with a remainder.


Finally move into decimal places to divide the total accurately


High expectations of the mathematical language used are essential, with staff only accepting what is correct. Consistency across the school is key:
\begin{tabular}{|c|c|}
\hline Correct Terminology & Incorrect Terminology \\
\hline ones & units \\
\hline \begin{tabular}{c} 
exchange \\
exchanging \\
regrouping
\end{tabular} & stealing \\
borrowing \\
\hline calculation \\
equation & generic term of 'sum' or 'number sentence' \\
\hline Bar model & \\
\hline known \\
unknown & \\
\hline whole \\
part & \\
\hline
\end{tabular}```

